Linguistic cost-sensitive learning of genetic fuzzy classifiers for imprecise data

نویسندگان

  • Ana M. Palacios
  • Luciano Sánchez
  • Inés Couso
چکیده

Cost-sensitive classification is based on a set of weights defining the expected cost of misclassifying an object. In this paper, a Genetic Fuzzy Classifier, which is able to extract fuzzy rules from interval or fuzzy valued data, is extended to this type of classification. This extension consists in enclosing the estimation of the expected misclassification risk of a classifier, when assessed on low quality data, in an interval or a fuzzy number. A cooperative-competitive genetic algorithm searches for the knowledge base whose fitness is primal with respect to a precedence relation between the values of this interval or fuzzy valued risk. In addition to this, the numerical estimation of this risk depends on the entrywise product of cost and confusion matrices. These have been, in turn, generalized to vague data. The flexible assignment of values to the cost function is also tackled, owing to the fact that the use of linguistic terms in the definition of the misclassification cost is allowed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Obtaining fuzzy rules from interval-censored data with genetic algorithms and a random sets-based semantic of the linguistic labels

Fuzzy memberships can be understood as coverage functions of random sets. This interpretation makes sense in the context of fuzzy rule learning: a random sets-based semantic of the linguistic labels is compatible with the use of fuzzy statistics for obtaining knowledge bases from data. In particular, in this paper we formulate the learning of a fuzzy rule based classifier as a problem of statis...

متن کامل

Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...

متن کامل

SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS

This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...

متن کامل

Obtaining linguistic fuzzy rule-based regression models from imprecise data with multiobjective genetic algorithms

Backfitting of fuzzy rules is an Iterative Rule Learning technique for obtaining the knowledge base of a fuzzy rule-based system in regression problems. It consists in fitting one fuzzy rule to the data, and replacing the whole training set by the residual of the approximation. The obtained rule is added to the knowledge base, and the process is repeated until the residual is zero, or near zero...

متن کامل

Efficient estimation of effort using machine-learning technique for software cost

Several useful models have been developed by the software engineering community to elucidate the periodic growth of life cycle and calculate the effort of cost estimation in a precise manner. One of the commonly used machine learning techniques is the analogy method that cannot handle the categorical variables efficiently. In general, project attributes of cost estimation are often measured in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Approx. Reasoning

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2011